TY - JOUR T1 - Atlantic meridional overturning circulation during the Last Glacial Maximum JF - Science Y1 - 2007 A1 - Lynch-Stieglitz, J. A1 - Adkins, J. F. A1 - Curry, W. B. A1 - Dokken, T. A1 - Hall, I. R. A1 - Herguera, J. C. A1 - Hirschi, J. J. M. A1 - Ivanova, E. V. A1 - Kissel, C. A1 - Marchal, O. A1 - Marchitto, T. M. A1 - McCave, I. N. A1 - McManus, J. F. A1 - Mulitza, S. A1 - Ninnemann, U. A1 - Peeters, F. A1 - Yu, E. F. A1 - Zahn, R. AB - The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation. VL - 316 IS - 5821 N1 - id: 1897; ISI Document Delivery No.: 153XD Times Cited: 46 Cited Reference Count: 61 Cited References: ADKINS JF, 1997, NATURE, V390, P154 ADKINS JF, 1999, RECONSTRUCTING OCEAN, P103 ADKINS JF, 2003, EARTH PLANET SC LETT, V216, P109, DOI 10.1016/S0012-821X(03)00502-8 BACON MP, 1982, J GEOPHYS RES, V87, P2045 BICKERT T, 2004, S ATLANTIC LATE QUAT, P671 BOYLE EA, 1982, SCIENCE, V218, P784 BROECKER W, 1988, RADIOCARBON, V30, P261 CHASE Z, 2002, EARTH PLANET SC LETT, V204, P215 CLARK PU, 2002, NATURE, V415, P863 CONKRIGHT ME, 2002, WORLD OCEAN ATLAS 20 CURRY WB, 1982, QUATERNARY RES, V18, P218 CURRY WB, 2005, PALEOCEANOGRAPHY, V20, ARTN PA1017 DUPIESSY JC, 1980, NATURE, V286, P479 DUPLESSY JC, 1988, PALEOCEANOGRAPHY, V3, P343 DUPLESSY JC, 1989, RADIOCARBON, V31, P493 ELDERFIELD H, 2006, EARTH PLANET SC LETT, V250, P633, DOI 10.1016/j.epsl.2006.07.041 EMILIANI C, 1955, J GEOL, V63, P538 GANACHAUD A, 2000, NATURE, V408, P453 GEBBIE G, 2006, GEOCHEM GEOPHY GEOSY, V7, ARTN Q11N07 GHERARDI JM, 2005, EARTH PLANET SC LETT, V240, P710, DOI 10.1016/j.epsl.2005.09.061 HALL IR, 2006, GEOPHYS RES LETT, V33, ARTN L16616 HALL MM, 1982, DEEP-SEA RES, V29, P339 HEWITT CD, 2003, CLIM DYNAM, V20, P203, DOI 10.1007/s00382-002-0272-6 HIRSCHI JJM, 2006, GEOCHEM GEOPHY GEOSY, V7, ARTN Q10N04 HUYBERS P, 2007, J PHYS OCEANOGR, V37, P394, DOI 10.1175/JPO3018.1 KEIGWIN LD, 2004, PALEOCEANOGRAPHY, V19, ARTN PA4012 KISSEL C, 1999, EARTH PLANET SC LETT, V171, P489 KITOH A, 2001, GEOPHYS RES LETT, V28, P2221 KUCERA M, 2005, QUATERNARY SCI REV, V24, P951, DOI 10.1016/j.quascirev.2004.07.014 KUMAR N, 1993, NATURE, V362, P45 LEGRAND P, 1995, PALEOCEANOGRAPHY, V10, P1011 LEGRANDE AN, 2006, P NATL ACAD SCI USA, V103, P837 LYNCHSTIEGLITZ J, 1999, PALEOCEANOGRAPHY, V14, P360 LYNCHSTIEGLITZ J, 2001, GEOCHEM GEOPHY GEOSY, V2, DOI 10.1029/2001GC000208 LYNCHSTIEGLITZ J, 2003, TREATISE GEOCHEMISTR, V6, P433 LYNCHSTIEGLITZ J, 2006, GEOCHEM GEOPHY GEOSY, V7, ARTN Q10N03 MANABE S, 1988, J CLIMATOL, V1, P841 MANGINI A, 1998, NATURE, V392, P347 MARCHAL O, 2000, PALEOCEANOGRAPHY, V15, P625 MARCHITTO TM, 2000, PALEOCEANOGRAPHY, V15, P299 MARCHITTO TM, 2006, GEOCHEM GEOPHY GEOSY, V7, ARTN Q12003 MAROTZKE J, 1999, J GEOPHYS RES-OCEANS, V104, P29529 MATSUMOTO K, 1999, PALEOCEANOGRAPHY, V14, P149 MCCAVE IN, 2006, GEOCHEM GEOPHY GEOSY, V7, ARTN Q10N05 MCMANUS JF, 2004, NATURE, V428, P834, DOI 10.1038/nature02494 MIX AC, 2001, QUATERNARY SCI REV, V20, P627 OTTOBLIESNER BL, 2006, J CLIMATE, V19, P2526 PAUL A, 2003, PALEOCEANOGRAPHY, V18, ARTN 1058 PIOTROWSKI AM, 2005, SCIENCE, V307, P1933, DOI 10.1126/science.1104883 ROBINSON LF, 2005, SCIENCE, V310, P1469, DOI 10.1126/science.1114832 ROEMMICH D, 1985, DEEP-SEA RES, V32, P619 SARNTHEIN M, 1994, PALEOCEANOGRAPHY, V9, P209 SCHMITTNER A, 2005, GLOBAL BIOGEOCHEM CY, V19, ARTN GB3004 SHACKLETON NJ, 1988, NATURE, V335, P708 SHIN SI, 2003, CLIM DYNAM, V20, P127, DOI 10.1007/s00382-002-0260-x STOMMEL H, 1961, TELLUS, V13, P224 STREETER SS, 1979, SCIENCE, V203, P168 VELLINGA M, 2002, CLIMATIC CHANGE, V54, P251 WUNSCH C, 2003, QUATERNARY SCI REV, V22, P371 YU EF, 1996, NATURE, V379, P689 ZHANG R, 2005, J CLIMATE, V18, P1853 Lynch-Stieglitz, Jean Adkins, Jess F. Curry, William B. Dokken, Trond Hall, Ian R. Herguera, Juan Carlos Hirschi, Joel J. -M. Ivanova, Elena V. Kissel, Catherine Marchal, Olivier Marchitto, Thomas M. McCave, I. Nicholas McManus, Jerry F. Mulitza, Stefan Ninnemann, Ulysses Peeters, Frank Yu, Ein-Fen Zahn, Rainer Amer assoc advancement science Washington; YY JO - Atlantic meridional overturning circulation during the Last Glacial Maximum ER - TY - JOUR T1 - Holocene sea-level oscillations and environmental changes on the Eastern Black Sea shelf JF - Palaeogeography Palaeoclimatology Palaeoecology Y1 - 2007 A1 - Ivanova, E. V. A1 - Murdmaa, I. O. A1 - Chepalyga, A. L. A1 - Cronin, T. M. A1 - Pasechnik, I. V. A1 - Levchenko, O. V. A1 - Howe, S. S. A1 - Manushkina, A. V. A1 - Platonova, E. A. AB - A multi-proxy study of four sediment cores from the Eastern (Caucasian) Black Sea shelf revealed five transgressive-regressive cycles overprinted on the general trend of glacioeustatic sea-level rise during the last 11,000 C-14 yr. These cycles are well represented in micro-and macrofossil assemblages, sedimentation rates, and gain size variations. The oldest recovered sediments were deposited in the Neoeuxinian semi-freshwater basin (similar to 10,500-9000 C-14 yr BP) and contain a Caspian-type mollusk fauna dominated by Dreissena rostriformis. Low delta O-18 and delta C-13 values are measured on this species. The first appearance of marine mollusks and ostracodes from the Mediterranean is established in this part of the Black Sea at similar to 8200 C-14 yr BP, i.e., about 1000-2000 yr later than the appearance of marine microfossils in the deeper part of the sea. The Early Holocene (Bugazian to Vityazevian) condensed section of shell and shelly mud sediments with at least two hiatuses represent a high-energy shelf-edge facies. It contains a transitional assemblage representing a mixture of Caspian and Mediterranean fauna. This pattern suggests a dual-flow regime via the Bosphorus after 8200 C-14 yr BR Caspian species disappear and oligolialine species decrease in abundance during the Vityazevian-Prekalamitian cycle. Later, during the Middle to Late Holocene, low sea-level stands are characterized by shell layers, whereas silty mud with various mollusk and ostracode assemblages rapidly accumulated during transgressions. Restricted mud accumulation, as well as benthic faunal composition and abundance, suggest high-energy and well-ventilated bottom water during low sea-level stands. A trend of O-18 enrichment in mollusk shells points to an increase in bottom-water salinity during the Vityazevian to Kalamitian transgressions (similar to 7000 to 5700 C-14 yr BP) due to a more open connection with the Mediterranean, while a pronounced increase in polyhaline species abundance is established during the Kalamitian to Djemetean transgressions (similar to 6400 to 2700 C-14 yr BP). However, the composition of the faunal assemblage indicates that bottom-water salinity never exceeded modem values of 18-20 psu. (c) 2006 Elsevier B.V. All rights reserved. VL - 246 IS - 2-4 N1 - 156gzTimes Cited:22Cited References Count:51 JO - Holocene sea-level oscillations and environmental changes on the Eastern Black Sea shelf ER -