Extreme waves in the British Virgin Islands during the last centuries before 1500 CE

TitleExtreme waves in the British Virgin Islands during the last centuries before 1500 CE
Publication TypeJournal Article
Year of Publication2017
AuthorsAtwater, BF, Brink, US ten, Cescon, ALisa, Feuillet, N, Fuentes, Z, Halley, RB, ñez, C, Reinhardt, EG, Roger, JH, Sawai, Y, Spiske, M, Tuttle, MP, Wei, Y, Weil-Accardo, J
JournalGeosphere
Volume13
Issue2
Pagination301 - 368
Date PublishedJul-04-2019
ISSN1553-040X
Abstract

Extraordinary marine inundation scattered clasts southward on the island of Anegada, 120 km south of the Puerto Rico Trench, sometime between 1200 and 1480 calibrated years (cal yr) CE. Many of these clasts were likely derived from a fringing reef and from the sandy flat that separates the reef from the island’s north shore. The scattered clasts include no fewer than 200 coral boulders, mapped herein for the first time and mainly found hundreds of meters inland. Many of these are complete colonies of the brain coral Diploria strigosa. Other coral species represented include Orbicella (formerly Montastraea) annu­laris, Porites astreoides, and Acropora palmata. Associated bioclastic carbonate sand locally contains articulated cobble-size valves of the lucine Codakia orbicularis and entire conch shells of Strombus gigas, mollusks that still inhabit the sandy shallows between the island’s north shore and a fringing reef beyond. italicmbricated limestone slabs are clustered near some of the coral boulders. In addition, fields of scattered limestone boulders and cobbles near sea level extend mainly southward from limestone sources as much as 1 km inland. Radiocarbon ages have been obtained from 27 coral clasts, 8 lucine valves, and 3 conch shells. All these additional ages predate 1500 cal yr CE, all but 2 are in the range 1000–1500 cal yr CE, and 16 of 22 brain coral ages cluster in the range 1200–1480 cal yr CE. The event marked by these coral and mollusk clasts likely occurred in the last centuries before Columbus (before 1492 CE).

The pre-Columbian deposits surpass Anegada’s previously reported evidence for extreme waves in post-Columbian time. The coarsest of the modern storm deposits consist of coral rubble that lines the north shore and sandy fans on the south shore; neither of these storm deposits extends more than 50 m inland. More extensive overwash, perhaps by the 1755 Lisbon tsunami, is marked primarily by a sheet of sand and shells found mainly below sea level beneath the floors of modern salt ponds. This sheet extends more than 1 km southward from the north shore and dates to the interval 1650–1800 cal yr CE. Unlike the pre-Columbian deposits, it lacks coarse clasts from the reef or reef flat; its shell assemblage is instead dominated by cerithid gastropods that were merely stirred up from a marine pond in the island’s interior.

In their inland extent and clustered pre-Columbian ages, the coral clasts and associated deposits suggest extreme waves unrivaled in recent millennia at Anegada. Bioclastic sand coats limestone 4 m above sea level in areas 0.7 and 1.3 km from the north shore. A coral boulder of nearly 1 m3 is 3 km from the north shore by way of an unvegetated path near sea level. As currently understood, the extreme flooding evidenced by these and other clasts represents either an extraordinary storm or a tsunami of nearby origin. The storm would need to have produced tsunami-like bores similar to those of 2013 Typhoon Haiyan in the Philippines. Normal faults and a thrust fault provide nearby tsunami sources along the eastern Puerto Rico Trench.

URLhttp://geosphere.gsapubs.org/lookup/doi/10.1130/GES01356.1
DOI10.1130/GES01356.110.1130/GES01356.S110.1130/GES01356.S2