Numerical models, geochemistry and the zero-paradox noble-gas mantle

TitleNumerical models, geochemistry and the zero-paradox noble-gas mantle
Publication TypeJournal Article
Year of Publication2002
AuthorsBallentine, CJ, Van Keken, PE, Porcelli, D, Hauri, EH
JournalPhilos Transact A Math Phys Eng Sci
Volume360
Issue1800
Pagination2611-31
ISSN1364-503X (Print) 1364-503X (Linking)
Abstract

Numerical models of whole-mantle convection demonstrate that degassing of the mantle is an inefficient process, resulting in ca. 50% of the (40)Ar being degassed from the mantle system. In this sense the numerical simulations are consistent with the (40)Ar mass balance between the atmosphere and mantle reservoir. These models, however, are unable to preserve the large-scale heterogeneity predicted by models invoking geochemical layering of the mantle system. We show that the three most important noble-gas constraints on the geochemically layered mantle are entirely dependent on the (3)He concentration of the convecting mantle derived from the (3)He flux into the oceans and the average ocean-crust generation rate. A factor of 3.5 increase in the convecting-mantle noble-gas concentration removes all requirements for: a (3)He flux into the upper mantle from a deeper high (3)He source; a boundary in the mantle capable of separating heat from helium; and a substantial deep-mantle reservoir to contain a hidden (40)Ar rich reservoir. We call this model concentration for the convecting mantle the 'zero-paradox' concentration. The time-integrated flux of (3)He into the oceans is a robust observation, but only representative of the ocean-floor activity over the last 1000 years. In contrast, ocean-floor generation occurs over tens of millions of years. We argue that combining these two observations to obtain the (3)He concentration of the mantle beneath mid-ocean ridges is unsound. Other indicators of mantle (3)He concentration suggest that the real value may be at least a factor of two higher. As the zero-paradox concentration is approached, the noble-gas requirement for mantle layering is removed. We further consider the role that recycled material plays in ocean-island-basalt generation and show that a source with high (3)He and (3)He/(4)He must exist within the mantle. Nevertheless, only a small amount of this material is required to generate both the observed ocean-island (3)He/(4)He ratios and the concentrations inferred from basalt samples for this mantle source.

DOI10.1098/rsta.2002.1083